
iOS Manual
1. Create the unit that will send messages to Wialon: access your user account, open the “Units”
tab, press the “New” button.

2. Set up the unit in the popped-up dialog: specify the Name, select the WiaTag Device type, fill
in the Unique ID and Password fields.

Note! Anyone with the unit’s ID and password can send messages to Wialon on behalf of this unit.
Make sure that only authorized people know the password.

To send the message, you will need the Server address, Unique ID and Password fields.

Lets have some coding
Work in Xcode 10 environment, select Swift 4.2 language. Create a Single-view App with the
WiatagKitSend name.

Connect wiatag-kit-ios with the help of cocoapods. To do this, we execute in the terminal:

cd /path/to/your/project/
pod init

Then open Podfile and paste there the lines:

pod 'WiaTagKit'

Get back to the terminal and execute:

pod install

Close the project and open workspace. Move to ViewController.swift and import the WiaTagKit
module.

Sending message to Wialon
1. Initialize WTMessageSender using the Wialon unit’s Server Address, Unique ID and

Password.
2. Initialize the WTMessage unit.
3. Send WTMessage using the corresponding WTSender method.

Here is the example of ViewController realization that sends an empty message when the controller
is shown:

import UIKit
import WiaTagKit

class ViewController: UIViewController {

 override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)
 sendMessage()

 }

 func sendMessage() {
 let host = "193.193.165.165"
 let port: UInt = 20963
 let unitId = "NewObject_Wialon"
 let password = "securePasswordString"
 let sender = WTMessageSender(host: host,
 port: port,

 unitId: unitId,

 password: password)

 let message = WTMessage { builder in }
 sender.send(message) { error in
 guard let error = error else {
 print("message sending completed with success")
 return
 }

 print("message sending failed with error \(error)")
 }

 }

}

Copy this code and insert it into your ViewController.swift.

Note! The host, port, unitId and password values should be replaced by your WiaTag unit’s Server
Address (IP, port), Unique ID, and Password.

Launching the project
If you did everything right, the message: message sending completed with success appears in
the Xcode console.

It means we sent an empty message.

Add the content to the message to WiaTag
Currently, the message can contain the following information:

1. Time of the message creation. It is sent anyways but can be redefined, means it may differ
from the actual time of the message creation.

2. Location. Most likely you will want to send it if your app works with the CoreLocation service.
Two constructor methods are used in this case:
WTLocation(location: CLLocation) – this constructor is likely to be enough for you.
WTLocation(latitude: Double, longitude: Double, altitude: Double, speed:
UInt16, bearing: UInt16, satellites: UInt8).

3. SOS-message flag.
4. Image. The WTImage class is used to send the image.
5. Text message.
6. Battery charge level.
7. Parameters. They have the keys (only strings) and the values (text, binary values and the

ones of the Int, Long, Float, Double types). You can’t send 2 parameters for one and the
same value of the key.

For example, let’s create the message that sends time, SOS-signal, image, text message, and
Int-parameter:

let message = WTMessage { builder in
 //setup time
 let date = Date(timeIntervalSinceNow: -20)
 builder.time = date

 //setup location
 let location = CLLocation(latitude: 53, longitude: 27)
 builder.location = WTLocation(location: location)
 //setup image
 let image = UIImage(named: "free_image.jpg")
 let imageData = image?.jpegData(compressionQuality: 1)
 if let imageData = imageData {
 builder.image = WTImage(imageData: imageData,
 named: "imageName.jpg")
 }

 //setup SOS signal
 builder.isSos = true
 //setup text message

 builder.text = "This is my text message!"
 //setup int param
 builder.addParam("int value", withIntValue: 3)
 }

You can send all messages with one method call. It is handier when you need to send several
messages.

func sendMessages() {
 var messages = [WTMessage]()

 let host = "193.193.165.165"
 let port: UInt = 20963
 let unitId = "NewObject_Wialon"
 let password = "securePasswordString"
 let sender = WTMessageSender(host: host,
 port: port,

 unitId: unitId,

 password: password)

 for i in 0...10 {
 let message = WTMessage { builder in
 //setup time
 let date = Date(timeIntervalSinceNow: TimeInterval(-i * 10))
 builder.time = date

 //setup location
 let location = CLLocation(latitude: 53, longitude: 27)
 builder.location = WTLocation(location: location)
 //setup image
 let image = UIImage(named: "free_image.jpg")
 let imageData = image?.jpegData(compressionQuality: 1)
 if let imageData = imageData {
 builder.image = WTImage(imageData: imageData,
 named: "imageName.jpg")
 }

 //setup SOS signal
 builder.isSos = true
 //setup text message
 builder.text = "This is my \(i) text message!"
 //setup int param
 builder.addParam("int value", withIntValue: 3)
 }

 messages.append(message)

 }

 sender.send(messages) { error in
 guard let error = error else {
 print("message sending completed with success")
 return
 }

 print("message sending failed with error \(error)")
 }

 }

It is one of the examples of how to work with WiaTagKit. Feel free to ask any questions on the new
library usage contacting us at development@gurtam.com.

mailto:development@gurtam.com

